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Abstract 

Background:  This study was to determine the prevalence and clinical significance of clonal hematopoiesis (CH)-
related variants, and somatic and germline mutations in cancer patients and healthy individuals.

Methods:  We performed next-generation sequencing of 275 cancer-related genes be-tween plasma and white 
blood cells in 92 cancer patients and 47 controls without cancer. Blood samples were recruited from May 2017 to July 
2021, and blood cancer patients were excluded. For all statistical analysis in this study, p < 0.05 was considered statisti‑
cally significant.

Results:  Overall, 38.04% of patients and 46.81% of controls harbored at least one CH-related mutation in plasma 
cell-free DNA. Based on our results, older cancer patients exhibited a CH phenomenon more frequently than younger 
patients (p = 0.0024). A total of 39 somatic pathogenic (P)/likely pathogenic (LP) mutations were identified in 17 
genes in 21 of 92 patients. We found that the presence of P/LP variants in cancer-related gene predicted shorter over‑
all survival (OS) (p = 0.001). Multivariate analysis adjusted for CH-related mutations, germline mutations, and tumor 
stage, also indicated that somatic mutations correlated significantly with OS (p = 0.022). Moreover, the frequency of a 
germline P/LP variant was that of seven of 92 individuals in the cancer group and one of 42 individuals in the control 
group.

Conclusions:  We characterized the CH-related variants, and somatic and germline mutations in cancer patients and 
healthy individuals, and the results have important clinical significance.
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Background
Liquid biopsy is a comprehensive and real-time anal-
ysis of tumor cells or tumor cell products released 
into the blood or other bodily fluids by all metastatic 
or primary tumor sites. Clinical application of liquid 

biopsy includes early detection of cancer or tumor 
recurrence, monitoring of cancer therapies, and deter-
mining therapeutic targets and resistance mechanisms 
to adapt therapy to the specific needs of an individual 
patient [1]. For example, liquid biopsy analysis has 
been demonstrated to allow detection of breast can-
cer 5 months earlier than traditional clinical examina-
tion [2]. Several immunotherapeutic drugs have been 
tested in clinical trials that use circulating tumor cells 
(CTCs) and circulating tumor-derived DNA (ctDNA) 
as biomarkers (www.​clini​caltr​ials.​gov). In addition 
to CTCs and ctDNA, members of the liquid biopsy 
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marker family include extracellular vesicles [3], micro-
RNAs [4], and tumor-educated platelets [5].

The presence of cell-free DNA (cfDNA) in human 
blood was first described by Mandel and Metais in 
1948 [6]. For cancer patients, cfDNA circulating in the 
peripheral blood is mostly released by apoptotic cells 
and necrotic tumor cells but also from extracellular 
vesicles [7]. cfDNA analysis overcomes the sampling 
biases inherent to intra-tumor genetic heterogene-
ity. The modal fragment size for tumor cfDNA and 
healthy cfDNA is 166 bp, but tumor cfDNA displays an 
increased proportion of short fragments (100–150 bp) 
[8]. In cancer patients, only a small portion of cfDNA 
(usually 0.01–5%) is shed into the blood by tumor 
cells; this is called ctDNA [9]. Tumor volume of 10 cm3 
(27 mm in diameter) leads to 0.1% ctDNA in the circu-
lation [10], but cancer type and biological character-
istics can also influence the concentration of ctDNA. 
Therefore, development of ultrasensitive methods 
to detect 0.01% or less ctDNA in blood plasma is 
necessary.

Abnormal expansion of clonally derived hematopoi-
etic stem and/or progenitor cells carrying somatic 
mutations is called clonal hematopoiesis (CH) [11]. 
CH is associated with an increased risk of hematologi-
cal malignancies, cardiovascular disease, and greater 
mortality of non-hematological cancers [12–15]. The 
most commonly mutated genes in CH are DNMT3A, 
TET2 and ASXL1 [16, 17]. In addition, CH is known 
to lead to false positive results in cfDNA testing, thus 
complicating the interpretation of liquid biopsy data 
[18, 19].

Next-generation sequencing (NGS) and digital drop-
let PCR (ddPCR) are more sensitive mutational analysis 
techniques. These methods enable detection of cfDNA 
with somatic mutations and have been used in differ-
ent types of cancers. NGS-based methods involve tar-
geted [20–22] and untargeted approaches and are well 
known for their outstanding parallel sequencing ability. 
Untargeted NGS methods such as whole-genome or 
whole-exome sequencing have also been used to detect 
mutants of ctDNA, but at a much higher cost to achieve 
similar sensitivity. ddPCR can detect known mutants at 
0.1% or lower in the blood, and has been used for hot-
spot mutant detection; it also suitable for the verifica-
tion of NGS results.

The goals of this study were to evaluate the efficacy 
and clinical impacts of liquid biopsy on cancer patients 
and healthy controls using a NGS panel targeting 275 
cancer-related genes. We also evaluated CH and ger-
mline mutations of patients after analyzing the char-
acteristics of mutants in white blood cells (WBCs) and 
plasma.

Methods
Clinical cohort
We retrospectively reviewed the sequence data from 139 
subjects who underwent genetic testing from May 2017 
to July 2021. Participants were excluded if they had a 
blood cancer. Blood samples were collected at 3 months 
after surgery in early stage patients. Advanced stage 
patients with were included, regardless of surgery or 
treatments. We included 92 patients with lung (36), ovar-
ian (27), colorectal (8), breast (5), endometrial (3), gastric 
(2), renal cell (2), prostate (2), urothelial (1), head and 
neck (1), hepatocellular (1), neuroendocrine (1), pancre-
atic (1), cervical (1), or fallopian tube (1) cancer and 47 
healthy individuals. This study was approved by the Insti-
tutional Review Board of the China Medical University 
Hospital (CMUH106-REC1–047).

Sample processing and DNA extraction
Plasma was collected in cell-free DNA collection tubes 
(Roche, Basel, Switzerland) and separated by centrifu-
gation. Whole blood was centrifuged at 1600×g for 
20 min at 20 °C. After separating red blood cells and the 
buffy coat, we centrifuged the plasma a second time at 
16,000×g for 10 min at 20 °C to remove residual cells. 
Supernatants were immediately stored at − 80 °C until 
ready for further processing.

Frozen aliquots of plasma (4–5 mL) were thawed at 
room temperature, and cfDNA was isolated using a 
QIAamp Circulating Nucleic Acid Kit (Qiagen, Heidel-
berg, Germany). Extracted DNA was immediately stored 
at − 20 °C until further processing. The concentration of 
purified DNA was measured by fluorometric quantita-
tion using Qubit (Thermo Fisher).

Next‑generation library preparation and sequencing
NGS testing was performed using the QIAseq targeted 
Human Comprehensive Cancer Panel (Qiagen), which 
contains 275 genes covering the most commonly occur-
ring mutations in cancer (cat. no. DHS-3501Z). The 
method has been described in detail in previous studies 
[23, 24].

Data analysis
Base calling and quality scoring were performed with an 
updated implementation of Real-Time Analysis on the 
NextSeq 500 system. We used bcl2fastq Conversion Soft-
ware to demultiplex data and convert BCL files to FASTQ 
files. Sequence reads were processed by read trimming, 
read aligning, barcode clustering, and gene-specific 
primer masking. Finally, single nucleotide polymor-
phisms (SNPs) and small insertion-deletion mutations 
(INDELs) were called in individual samples using 
smCounter at the default settings. We used ANNOVAR 
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to annotate variants; in particular, dbSNP and ClinVar, 
were used to determine whether the variants had been 
previously identified. Germline mutations with a ≥ 30% 
allelic fractions (AFs) in both WBC DNA and cfDNA 
were analyzed.

Several filter procedures were executed after muta-
tion calling. (1) Synonymous variants were filtered out. 
(2) Variants with low depth (< 500× in cfDNA, 100× in 
WBC DNA) were filtered out. Variants with < 5 high-
quality sequencing reads for cfDNA and 2 high-quality 
sequencing reads for WBC DNA were removed. (3) An 
in-house database of 191 cancer patients and 24 healthy 
individuals was created. Variants were filtered out if pre-
sent in > 5% of samples in the in-house database and > 1% 
in dbSNP. The remaining variants were identified as high-
confidence somatic mutations.

Statistical analysis
Nonparametric Mann-Whitney tests were performed to 
compare ages in different groups. A Kaplan-Meier plot 
with log-rank test was employed to compare survival 
among groups. Independent prognostic factors were ana-
lyzed by the Cox proportional harzards regression model. 
Statistical analysis was performed using GraphPad Prism 
(version 8.0.2; GraphPad Software, San Diego, CA, USA) 
and SPSS 22.0 (IBM, Armonk. NY, USA). P < 0.05 was 
considered statistically significant.

Results
Description of analytical cohort
We obtained 139 peripheral blood samples from 92 
patients and 47 healthy individuals. The patient cohort 
encompassed 15 principal tumor types. The most com-
mon tumor type was lung cancer (n = 36). Other com-
mon types included ovarian cancer (n = 27), colorectal 
cancer (n = 8), and breast cancer (n = 5). Demographic 
characteristics of the 139 participants are summa-
rized in Table  1. Detailed information is presented in 
Additional  file  1: Table  S1. All plasma samples were 
sequenced to deep coverage (median, 9804×; range, 
1594–43,746×) to ensure high sensitivity for the detec-
tion of genomic alterations. The median sequencing 
depth for WBCs was 944× (range, 105–15,636×).

Some cfDNA mutations originate from CH variants in WBCs
Ultradeep sequencing was performed for WBCs of the 
92 cancer patients to characterize the sources of the 
cfDNA mutations detected in plasma. A total of 138 
mutations detected from 35 samples of plasma were 
also detected in WBCs, suggesting a hematopoietic 
origin (Additional  file  2: Table  S2). KMT2C (10.87%, 
10/92), NF1 (6.52%, 6/92), CHEK2, DNMT3A, NOTCH3 
(5.43%, 5/92), PMS2 (4.35%, 4/92), KMT2D (3.26%, 3/92) 

and SUZ12 (3.26%, 3/92) were the most recurrent. For 
ASXL1, BCR, CUX1, FANCD2, GATA2, MYCL, PPM1D, 
SOX9, TERT, TET2, and TSC2, a mutation of each gene 
was found in two patients (2.17%, 2/92) (Fig. 1a). Among 
the 15 canonical genes associated with CH, our cancer 
patients had mutations in CHEK2, DNMT3A, ASXL1, 
PPM1D, and TET2 only (Fig.  1a). Furthermore, cancer 
patients with CH variants were significantly older than 
those without CH variants in cfDNA (61 vs. 53 years, 
p = 0.0024) (Fig.  2a). We also examined the association 
between the CH variants and stage of cancer patients. 
The results showed that the CH variants are not associ-
ated with cancer’s stage (p = 0.3058) (Additional  file  3: 
Table S3).

In healthy individuals, 66 mutations detected from 22 
plasma samples were also detected in WBCs, suggesting 
their hematopoietic origin (Additional  file  4: Table  S4). 
Mutations in CHEK2 (19.15%, 9/47), PMS2 (17.02%, 
8/47), NF1 (12.77%, 6/47), KMT2D (6.38%, 3/47), 
BCR, DNMT3A, FANCD2, KMT2C, PPM1D, RAD50, 
SUZ12, and U2AF1 (4.26%, 2/47) were the most recur-
rent (Fig.  1b). The remaining mutations of CH-related 
genes were identified in one sample. Mutations of five 
(CHEK2, DNMT3A, PPM1D, U2AF1, and ASXL1) of 15 
canonical CH genes were found in the healthy subjects 
(Fig. 1b). No statistical differences were observed in the 
age of the healthy subjects in the cohort with at least one 

Table 1  General characteristics of participants (N = 139)

Variable Categories Patient subjects 
(N = 92) N (%)

Healthy 
subjects 
(N = 47) N (%)

Gender Male 32 (34.78) 30 (63.83)

Female 60 (65.22) 17 (36.17)

Age ≤45 15 (16.30) 10 (21.28)

46–60 45 (48.91) 19 (40.43)

61–75 25 (27.17) 16 (34.04)

≥76 5 (5.43) 2 (4.26)

NA 2 (2.17) NA

Tumor types Lung 36 (39.13) NA

Ovarian 27 (29.35) NA

Colorectal 8 (8.70) NA

Breast 5 (5.43) NA

Endometrial 3 (3.26) NA

Gastric 2 (2.17) NA

Prostate 2 (2.17) NA

Renal cell 2 (2.17) NA

Head and neck 1 (1.09) NA

Liver 1 (1.09) NA

Urothelial 1 (1.09) NA

Other 4 (4.35) NA



Page 4 of 9Chang et al. BMC Cancer          (2022) 22:413 

CH-related mutation and in that without a CH-related 
mutation (54 vs. 56 years, p = 0.5933) (Fig. 2b).

Mutation landscape of pan‑cancer ctDNA
Twenty-one cancer patients (22.83%, 21/92) had a 
somatic mutation(s) classified as pathogenic (P)/likely 
pathogenic (LP) in the ClinVar database (Additional file 5: 
Table  S5). The most frequently mutated gene was TP53 
(9/92, 9.78%), followed by KMT2D, NF1, PIK3CA, and 
SOX2, which were each found in three separate cases 
(3/92, 3.26%) and CTNNB1, FGFR2, MSH6, and PTEN, 
which were each found in two separate cases (2/92, 
2.17%). APC, BRAF, BRCA2, EGFR, ERBB2, IDH1, KRAS, 
and NTRK1 were each found in one case (1/92, 1.09%).

We also compared the overall survival (OS) of can-
cer patients with versus without a somatic P/LP variant 
in ctDNA. OS was better in those without P/LP can-
cer-related gene mutations, as compared to those with 

Fig. 1  Identifying CH variants in plasma cfDNA via matched WBC sequencing. a Percentage of plasma samples with identified CH variants in 
different cancer types. The first row indicates the overall percentage of samples with CH variants in different cancer types. The remaining rows 
indicate the percentage of samples with CH variants in recurrent and canonical genes. b Percentage of plasma samples with identified CH variants 
in controls

Fig. 2  Age of a patients and b healthy controls with and without CH 
variants. Statistical analysis was performed using the Mann-Whitney 
test
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mutations (7.42 vs. 2.87 years, respectively); this asso-
ciation was statistically significant (p = 0.001; Fig.  3). 
Multivariate analysis that incorporated independent 
prognostic factors of CH-related mutation, germline 
mutation, and tumor stage revealed that the presence of 
P/LP somatic mutations was significantly correlated with 
OS (p = 0.022) (Table 2).

One healthy individual (2.13%, 1 of 47) had a somatic 
mutation of the MYC gene classified as P/LP in the Clin-
Var database (Additional  file  6: Table  S6). The clinical 
impact of this variant will require close observation and 
follow-up.

Frequency of germline P/LP mutations detected in cfDNA
Seven cancer patients (7.61%, 7/92) had an evaluable can-
didate germline variant(s) with a variant allele frequency 
(VAF) between 30 and 60%, irrespective of pathogenicity 
on ctDNA analysis. The germline variants identified were 
MSH2 p.R711X, BRCA1 p.T1691K, MUTYH p.R95W, 
RAD50 p.L719fs, BRCA2 p.T587fs, BRIP1 p.W448X, 
and MPL c.981-1G > C (Additional  file  7: Table  S7). Of 
7 patients with a germline mutation, two (28.57%) had a 
family history with cancer.

One healthy individual (2.13%, 1/47) had a candidate 
germline variant identified as NOTCH3 p.R544C (Addi-
tional file 8: Table S8). This variant was present at a VAF 

of 47.41% (247/521) in cfDNA and 49.05% (258/526) in 
matched buffy coat.

Case presentation
We only have nine cases involving both FFPE and liquid 
biopsy samples (Additional file 9: Table S9). For example, 
we compared the concordance between FFPE and ctDNA 
genomic profiling of one lung cancer patient. TP53 
p.R248L P mutation was found in two different types 
samples. This patient receive radiotherapy during this 

Fig. 3  Kaplan-Meier curve in patients with and without mutations in P/LP somatic cancer-related genes

Table 2  Multivariate analysis (Cox regression) of independent 
prognostic factors in patients with cancer

Variables Harzard Ratio 95% CI p-value

CH-related muta‑
tions

– 1 0.512–2.778 0.684

+ 1.192

Somatic P/LP muta‑
tions

– 1 1.166–7.011 0.022

+ 2.859

Germline P/LP muta‑
tions

– 1 0.054–2.437 0.297

+ 0.364

Tumor stage I and II 1 0.509–14.731 2.737

III and IV 2.737
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period (Fig. 4). The result indicated that TP53 mutation 
may induce resistance to certain cancer therapy.

Discussion
Herein, we report a study of non-invasive ctDNA detec-
tion for Taiwanese cancer patients and healthy indi-
viduals. We analyzed the detected variants and further 
characterized them as CH (Additional  file  10: Fig. S1), 
somatic, or germline variants (Additional file 11: Fig. S2). 
Overall, 22.83% of cancer patients harbored P/LP somatic 
mutations. As expected, a lower frequency (2.13%) in 
healthy individuals was observed. The majority of cancer 
patients (58%) had ≥1 ctDNA alteration(s) [25]. In the 
present study, somatic mutations were only evaluated in 
the ClinVar database as P/LP; variants of undetermined 
significance, synonymous, or further analyzed by predic-
tion tools were excluded. As a result, the detection rate 
of somatic alterations in our study was lower than that of 
other published studies. One of the 47 healthy individuals 
carried at least one P/LP somatic mutation in our study, 
in contrast with another study [19]. ctDNA analysis of 
this person using NGS or ddPCR is recommended to 
detect the variant change, and more strict clinical study 
may be needed if the plasma concentration of the variant 
is elevated.

We also identified seven P/LP germline variants in 
seven cancer-related genes (BRCA1, BRCA2, BRIP1, 
MPL, MSH2, MUTYH, and RAD50) in 7.61% (7/92) of 
cancer patients. These germline mutations were detected 
in three ovarian, two lung, one cervical, and one endo-
metrial cancer patient; most of the mutations produced 
stop codons, frameshifts, or aberrant splicing resulting 
in loss of the protein. Thus these mutations are likely 
to influence greatly or inhibit protein function. Many 
studies have explored the association between germline 
variants and somatic aberrations [26, 27], and carriers 
of germline variants in our study are already known as 
high penetrance mutants for cancer development, e.g., 
P/LP germline mutations in 12 genes (BARD1, BRCA1, 
BRCA2, BRIP1, PALB2, RAD51C, RAD51D, MSH2, 
MLH1, PMS2, MSH6, and EPCAM) are known or sus-
pected to increase the risk of ovarian cancer [28]. Among 

these ovarian cancer susceptibility genes, we identified P/
LP germline variants in BRCA1 and MSH2 in our ovar-
ian cancer cohort. MUTYH germline mutations are 
best known for their role in colorectal cancer. Win et al. 
reported that biallelic germline MUTYH mutations con-
fer a 14% risk of ovarian cancer by age 70 [29]. In the 
current study, we identified a MUTYH germline muta-
tion in one ovarian cancer patient. A previous study in 
36,813 Chinese lung cancer patients, focusing on eight 
key lung cancer driver genes (EGFR, ALK, MET, KRAS, 
ERBB2, ROS1, RET, and BRAF), revealed a prevalence 
of 0.03% for P/LP germline mutations [30]. However, we 
did not find germline mutations in these genes. In our 
lung cancer patient cohort, BRIP1 (p.W448X) and MPL 
(c.981-1G > C) germline mutations were detected. Ger-
mline mutations in BRIP1 and MPL were associated with 
increased ovarian cancer risks and hereditary thrombo-
cytosis, respectively [31, 32]. Liu et al. observed BRIP1 LP 
germline mutations (p.M1V and p.T977fs) in lung cancer 
[33]. However, the spectrum of mutation (p.W448X) is 
different to that reported by Liu et  al. RAD50 germline 
mutation (p.L719fs), identified by Fan et  al. in breast 
cancer patients, is consistent with our analysis of cervi-
cal cancer patient [34]. Germline mutations in BRCA​ 
have been associated with cases of endometrial cancer, 
mainly in BRCA1 [35]. In the present study, we identified 
a BRCA2 germline mutation, p.T587fs, in patient with 
endometrial cancer. From these results, we recommend 
familial cancer consultations for the family members of 
these patients.

We identified one LP germline mutation, p.R544C, in 
NOTCH3 in healthy individuals. Germline mutation has 
not been previously described in the NOTCH3 gene. The 
clinical significance of this variant warrants further study, 
and we recommend that this individual be closely moni-
tored to allow for early detection of cancer if necessary.

We found that 38.04% of patients carried CH muta-
tions, which differs slightly from other studies; we suggest 
that the rate is dependent on the materials and methods 
used. Highly sensitive cfDNA approaches have identi-
fied CH mutations in 89.5% of patients with cancer and 
83% of controls without cancer [17]. Chan et al. detected 

Fig. 4  Timeline of events from surgery and cfDNA sequencing of the patient



Page 7 of 9Chang et al. BMC Cancer          (2022) 22:413 	

CH-related mutations in 29% (11/38) of colorectal can-
cer patients [36]. A recent study conducted by Zhang 
et  al. found that 14.0% (1861/13,333) of cancer patients 
harbored CH variants in plasma samples [37]. A different 
NGS panel and sequencing paired plasma-WBCs could 
lead to differing prevalence of CH detection in cfDNA. 
Liu et al. showed the ineffectiveness of distinguishing CH 
mutations of low VAF (≦0.1%) from tumor-derived muta-
tions using conventional NGS of blood cell DNA [38]. We 
set our minimum VAF requirements to > 1%; thus, some 
CH mutations may have been missed, which may result 
in a slightly lower occurrence rate in our data.

Age-associated mutations including cytosine deami-
nation, DNA double-strand breaks, polymerase error, 
and structure rearrangements of chromosomes are 
common. Adult humans have hematopoietic stem cells 
(HSCs) about 50,000 to 200,000, and harbor up to 1.4 
million protein coding mutations in HSC pool by age 70, 
and these mutations may cause clonal expansions [39]. 
This reason can be used to explain our results that older 
patients have more frequent CH-related mutations.

CH can lead to blood cancers, therefore CH mutations 
detected in myelodysplastic syndrome and acute myeloid 
leukemia is important [40]. In patients with solid tumors, 
matched cfDNA-WBC sequencing can be used to dis-
tinguish CH somatic mutations from those in the solid 
tumor cells. When CH mutations are actionable altera-
tions, it may lead to erroneous treatment recommenda-
tions. Early-stage cancers [41], minimal residual disease 
[42], and intra- and intertumoral heterogeneity [43] may 
have a low VAF, similar to CH, and these results may lead 
to false negatives in the clinical setting. To address this, 
we sequenced the buffy coat of blood, and were able to 
differentiate CH from the above-mentioned conditions. 
In patients with cancer, CH is a common occurrence, and 
associated with aging, smoking, and radiation therapy 
[12]. CH has been linked to decreased overall survival, 
including greater risk of cardiovascular mortality [13]. 
Whether CH can be applied as the prognosis biomarker 
for solid tumor need further study.

Liquid biopsy has many clinical impacts. Recent 
studies have shown that detected positive cases have 
poorer survival than detected negative cases includ-
ing therapeutic response and prognosis [44–48]. This is 
consistent with our findings. Our results showed that 
the presence of P/LP variants in cancer-related genes 
predicted shorter OS in patients (2.87 vs. 7.42 years, 
p = 0.001). Multivariate analysis adjusted for CH-
related mutation, germline mutation, and tumor stage 
also indicated that somatic mutations correlate signifi-
cantly with OS (p = 0.022). We also examined the effect 
of P/LP somatic mutation in lung (36 cases) and ovar-
ian (27 cases) cancer patients separately. But, there was 

no statistically significant difference between the two 
groups with respect to P/LP somatic mutation in two 
different cancer types, which may be due to small num-
ber of these cancers, and different treatment history. 
The appearance of P/LP in the results of liquid biopsy 
has strong correlation with patients prognosis is con-
firmed by many studies that including many types of 
cancers. Our study showed P/LP influencing the sur-
vival of unselected cancer types.

Conclusions
In summary, the present study identified the muta-
tional spectra of pan-cancer in a Taiwanese population. 
ctDNA analysis has important clinical impacts. In addi-
tion, matched cfDNA-WBC sequencing is important 
for accurate variant interpretation.
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